Золотое сечение

Содержание:

Золотое сечение в науке

Общее сопротивление этой бесконечной цепи равно Фr.

Золотое число возникает в разных задачах, в том числе в физике. Например, бесконечная электрическая цепь, приведенная на рисунке имеет общее сопротивление (между двумя левыми концами) Ф·r.

Отношение амплитуд колебаний и частот ~ Ф.

Существуют колебательные системы, физические характеристики которых (отношения частот, амплитуд и др.) пропорциональны золотому сечению. Самый простой пример — система из двух шариков, соединенных последовательно пружинами одинаковой жесткости (см. рисунок).

Полностью эти две задачи рассматривается в книге «В поисках пятого порядка», глава «Две простые задачки». Более сложные примеры на механические колебания и их обобщения рассматриваются в этой же книге, в главе «Обобщения одной простой задачи по механике». В книге приведено много примеров проявления и применения золотого сечения в различных областях наук — небесной механике, физике, геофизике, биофизике, физической химии, биологии, физиологии.

Золотое сечение сильно связано с симметрией пятого порядка, наиболее известными трехмерными представителями которой являются додекаэдр и икосаэдр. Можно сказать, что всюду, где в структуре проявляются додекаэдр, икосаэдр или их производные, там в описании будет появляться и золотое сечение. Например, в пространственных группировках из Бора: В-12, В-50, В-78, В-84, В-90, …, В-1708, имеющих икосаэдрическую симметрию.
Молекула воды, у которой угол расхождения связей Н-О равен 104.7 , то есть близок к 108 градусам (угол в правильном пятиугольнике), может соединяться в плоские и трехмерные структуры с симметрией пятого порядка. Так в разреженной плазме был обнаружен Н+(Н20)21, который представляет из себя ион Н30+, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра. В 80-х годах XX века были получены клатратные соединения, содержащие гексааквакомплекс кальция, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра. Есть и клатратные модели воды, в которых обыкновенная вода отчасти состоит из молекул воды, соединенных в структуры с симметрией пятого порядка. Такие структуры могут состоять из 20, 57, 912 молекул воды.

Золотое сечение в дизайне интерьера

При планировании пространства рисуется планировка, которую разбивают на части по принципу золотой спирали. Зонирование пространства, производится в точном соответствии с точками пересечения основных линий – в этих точках будет находится мебель, ширмы, экраны и т. д.

Когда проектирует дом, то тоже придерживаются необходимых правил. Так, отношение самой большой комнаты к площади квартиры равняется как 0,62 к 1, меньшая с таким же соотношением к площади большой, кухня — к меньшей комнате, прихожая к кухне, санузел к прихожей, балкон – к санузлу.

Использование золотых пропорций в интерьере вашего дома, квартиры

Смотря на картинку ниже, сразу же бросается в глаза едва уловимая асимметрия, и легкий беспорядок. Золотое сечение помогает оформить интерьер, который будет давать чувство спокойствия и уюта. 

Красиво обустроенный домашний интерьерИсточник 1zoom.me

Следует запомнить, что идеальным по форме помещением является, такое у которого соотношение ширины к длине равно 5 к 8, или 1 к 1,62.

При проектировании первых многоквартирных домов, в начале прошлого века, использовалась система антропометрических пропорций, придуманная архитектором Ле Корбюзье.

Модулор Ле Корбюзье Источник /www.metalocus.es

Так называемый «модулор» представлял собой фигурку человека с поднятой рукой, рост и все пропорции которого, равнялись усредненным, реальным параметрам человеческого тела.

 Это еще раз доказывает, что наиболее удобным для человека жильем является дом, спроектированный в соответствии с законами божественной пропорции, которые проявляется в природе и в частности в человеческом теле.

Расстановка мебели по законам золотого сечения

Самое главное, что вам нужно запомнить это соотношение 2:3.

Для начала, необходимо визуально разделить пространство на две части: большая, которая составит две трети от общей площади, будет содержать мебель и станет основной зоной, и меньшая, предназначенная для вторичных функций, как отдельный уголок, или место для хранения.

Видео описание

В этом видео представлен пример применения принципа золотого сечения в обстановке дома:

Выбор цвета по правилам золотого сечения

Обычно при выборе цветовой гаммы пользуются соотношением 10-30-60, которое основывается на золотом сечении.

Таким образом, пространство должно состоять из трёх цветов: первый – доминирующий, который будет охватывать 60% комнаты, этот цвет припадает на стены и пол.

За ним следует второй, который составляет 30% — это мебель. И третий, составляющий 10%, используется для небольших предметов, тот же декор.

Правильное соотношение занимаемой мебелью площади Источник salexplorer.com

Подвесной декор

Разделите свободную площадь стены на три равные части по горизонтали и вертикали, прямоугольник, который окажется внутри и будет привлекать основное внимание гостей. 

Демонстрация гармоничного подвесного декораИсточник yandex.net

Золотое сечение в мебели

Необходимое число и нужные размеры мебели определяют, отталкиваясь от габаритов самых крупных ее представителей – шкафов, диванов, столов, и т. д. Например, если шкаф-стенка занимает две трети от всей площади комнаты, тогда диван-кровать должен быть в пределах 2/3 от величины шкафа. По тому же принципу строится соотношение размеров стола к дивану, кресел к столу, стульев к креслам и т.д. 

Гармоничная расстановка мебелиИсточник decoratw.com

То же самое и с декором, большие предметы комбинируются с более мелкими, с сохранением соотношения золотой пропорции.

Есть фирмы, которые выпускают целые наборы мебели, спроектированные, с уже правильным соотношением размеров отдельных элементов набора.

Уютный интерьер комнаты Источник yandex.net

Видео описание

Смотрите в видео примеры применения правила золотого сечения в интерьере:

Заключение

Золотое сечение — это соотношение одной величины к другой на 1,618. Применяется в искусстве, дизайне логотипов и других областях жизни людей. Но первоначально этот принцип был выведен из природы: строения ракушки, уха человека, вселенной, ДНК.

У людей, которые знают правило золотого сечения, как правило, не возникает трудностей с правильной и гармоничной расстановкой мебели в комнате, и различных элементов декора. Также эта информация помогает и в ландшафтном дизайне, более эстетично и правильно благоустроить сад и огород, детскую площадку.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» — это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Пропорции золотого сечения в человеке

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

  • от плеч до макушки к размеру головы = 1:1.618

  • от пупка до макушки к отрезку от плеч до макушки = 1:1.618

  • от пупка до коленок и от коленок до ступней = 1:1.618

  • от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618

Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

  • в завитках человеческого уха мы можем увидеть золотую спираль;

  • ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

  • и в молекуле ДНК;

  • по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, — спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

  • Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

  • Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

  • Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

  • Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет

Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

  • Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

  • В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

  • В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

  • Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

  • Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

https://youtube.com/watch?v=c3SVIQBXMnA

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Что такое золотое сечение где оно встречается и для чего применяется. Золотое сечение в природе и искусстве

Человечество за всю историю открыло несколько уникальных закономерностей, которые нашли широкое применение в самых разнообразных областях. Одна из них – золотое сечение.

Оно описывает разделение объекта на 2 части в том соотношении, в котором меньшая часть относится к большей, так же как большая часть относится к полному размеру объекта. В качестве примера этого запутанного определения можно привести деление прямоугольного листа: отрезая от полного листочка меньший прямоугольник, у последнего окажется то же соотношение сторон, что и у большого. Еще один пример – звезда с пятью концами: в этой геометрической фигуре каждый отрезок, соединяющий её лучи, разделяется по данному правилу пересекающим его отрезком.

Как появилось правило золотого сечения?

История возникновения уходит в далекое прошлое. Его описывал в труде «Начала» древний ученый и мыслитель Евклид, это первые документальные упоминания. Древнегреческий математик не единственный, кто заметил и активно использовал правило. Значительно позже его применял и Леонардо да Винчи, называя «божественной пропорцией», и Мартин Ом. Последний в 1835 году ввел в обиход этот термин.

Где можно встретить?

Золотое сечение в природе можно заметить у растений: они при росте сохраняют заданные пропорции. А немецкий ученый Цейзинг установил, что деление человеческого тела в точке пупка также соответствует данному правилу. Отмечено явление и в следующих областях:

  • архитектура – египетские пирамиды, построенные много веков назад;
  • музыка – произведения Моцарта и Бетховена;
  • скульптура – пропорции многих сооружений из камня строятся в соответствии с правилом;
  • живопись – художник Василий Суриков отмечал, что в написании картин существует закон о том, что в работу ничего нельзя ни добавить, ни убрать (используются те же самые математические принципы).

Сфера использования достаточно обширна, некоторым свойственно видеть его даже в бытовых мелочах, что, конечно, является сильным преувеличением. Тем не менее, правило, открытое еще в древние века, активно используется и в наши дни.

Использование Золотого сечения

Считается, что Золотое сечение использовалось как минимум 4000 лет в изобразительном искусстве и дизайне. В более современные времена Золотое сечение можно наблюдать в музыке, искусстве и дизайне. Применяя аналогичную рабочую методологию, вы можете привнести те же ощущения дизайна в вашу собственную работу.

Давайте посмотрим на пару примеров.

Древнегреческая архитектура использует Золотое сечение для определения нужных размеров

Древнегреческая архитектура использовала Золотое сечение, чтобы определить идеальные размерные соотношения между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих конструкцию.

Конечный результат — здание, которое ощущается полностью пропорционально. Неоклассическое архитектурное движение также повторно использовало эти принципы.

Леонардо да Винчи широко использовал Золотое сечение

Леонардо да Винчи, как и многие другие художники на протяжении веков, широко использовал Золотое сечение для создания идеальных композиций. В «Тайной вечере» фигуры располагаются в нижних двух третях (большей из двух частей Золотого сечения), и положение Иисуса идеально строится путем расположения золотых прямоугольников по всему холсту.

Есть также многочисленные примеры Золотого сечения в природе — вы можете наблюдать это вокруг себя. Цветы, морские раковины, ананасы и даже соты.

Создание золотого сечения

Создание золотого прямоугольника довольно просто, и начинается с базового квадрата. Выполните следующие действия, чтобы создать свое собственное Золотое сечение:

01. Нарисуйте квадрат

Начните с рисования квадрата любого размера. Сторона этого квадрата будет формировать длину «короткой стороны» прямоугольника.

Разделите ваш квадрат пополам вертикальной линией по центру. В результате получится два прямоугольника.

В одном из этих прямоугольников нарисуйте прямую линию от одного угла до противоположного угла.

04. Поверните линию

Поверните эту линию, поворачивая от нижней (или верхней) точки, пока она не совпадет с нижней частью первого прямоугольника.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и исходный прямоугольник в качестве направляющих. Это будет ваш золотой прямоугольник.

Использование Золотого сечения проще, чем вы думаете. Есть несколько быстрых трюков, которые вы можете использовать, чтобы представить идею в своих макетах.

Быстрый способ

Если вы когда-либо сталкивались с «Правилом третей», вы будете знакомы с идеей, что, разделив область на равные трети как по вертикали, так и по горизонтали, пересечение линий обеспечит естественный фокус для фигуры.

Фотографов учат размещать ключевой объект на одной из этих пересекающихся линий, чтобы получить идеальную композицию, и тот же принцип можно использовать в макетах страниц, макетах веб-сайтов и в постерах.

Правило третей может быть применено к любой фигуре, если вы примените его к прямоугольнику с пропорциями приблизительно 1: 1,6, вы получите золотой прямоугольник, что делает композицию еще более приятной для глаз.

Полная реализация Золотого сечения

Если вы хотите полностью внедрить Золотое сечение в свой дизайн, вы можете сделать это, обеспечив соотношение между областью содержимого и боковой панелью (например, в дизайне веб-сайта) в соотношении 1: 1,61.

Можно округлить это число вверх или вниз на одну или две точки, чтобы получить числа с пикселями или точками. Поэтому, если у вас есть область содержимого 640 пикселей, боковая панель 400 пикселей будет достаточно хорошо соответствовать золотому сечению.

Использование Золотого сечения в макете веб-страницы обеспечивает естественный, приятный результат.

Конечно, вы также можете разделить области контента и боковой панели вверх, используя одинаковое соотношение, и связь между верхним колонтитулом, областью контента, нижним колонтитулом и навигацией также может быть разработана с использованием того же базового золотого коэффициента.

Ссылки[править | править код]

  1. Livio, Mario (2002). The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number. New York: Broadway Books. ISBN 0-7679-0815-5.
  2. http://bse.sci-lib.com/article093423.html
  3. Livio, Mario (2002). The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number. New York: Broadway Books. ISBN 0-7679-0815-5
  4. Piotr Sadowski, The Knight on His Quest: Symbolic Patterns of Transition in Sir Gawain and the Green Knight, Cranbury NJ: Associated University Presses, 1996
  5. Richard A Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing, 1997
  6. Euclid, Elements, Book 6, Definition 3.
  7. Summerson John, Heavenly Mansions: And Other Essays on Architecture (New York: W.W. Norton, 1963) p. 37. «And the same applies in architecture, to the rectangles representing these and other ratios (e.g. the ‘golden cut’). The sole value of these ratios is that they are intellectually fruitful and suggest the rhythms of modular design.»
  8. Jay Hambidge, Dynamic Symmetry: The Greek Vase, New Haven CT: Yale University Press, 1920
  9. William Lidwell, Kritina Holden, Jill Butler, Universal Principles of Design: A Cross-Disciplinary Reference, Gloucester MA: Rockport Publishers, 2003
  10. Pacioli, Luca. De divina proportione, Luca Paganinem de Paganinus de Brescia (Antonio Capella) 1509, Venice
  11. The golden ratio can be derived by the quadratic formula, by starting with the first number as 1, then solving for 2nd number x, where the ratios (x + 1)/x = x/1 or (multiplying by x) yields: x + 1 = x2, or thus a quadratic equation: x2 − x − 1 = 0. Then, by the quadratic formula, for positive x = (−b + √(b2 − 4ac))/(2a) with a = 1, b = −1, c = −1, the solution for x is: (−(−1) + √((−1)2 − 4·1·(−1)))/(2·1) or (1 + √(5))/2.
  12. The golden ratio can be derived by the quadratic formula, by starting with the first number as 1, then solving for 2nd number x, where the ratios (x + 1)/x = x/1 or (multiplying by x) yields: x + 1 = x2, or thus a quadratic equation: x2 − x − 1 = 0. Then, by the quadratic formula, for positive x = (−b + √(b2 − 4ac))/(2a) with a = 1, b = −1, c = −1, the solution for x is: (−(−1) + √((−1)2 − 4·1·(−1)))/(2·1) or (1 + √(5))/2.
  13. Ошибка цитирования Неверный тег ; для сносок не указан текст
  14. Радзюкевич А. В. Красивая сказка о «золотом сечении»
  15. Золотой запас зодчества
  16. http://inf.1september.ru/article.php?ID=200702104
Числа с собственными именами
Вещественные
Натуральные
Степени тысячи

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Золотое сечение в музыке. Метод золотого сечения в музыкальных произведениях

«Золотое сечение» – это понятие, скорее, математическое и его изучение – задача науки. Это деление некоей величины на две части в таком отношении, когда болььшая часть так будет относиться к меньшей, как целое к большей. Данное отношение оказывается равным трансцендентному числу Ф=1,6180339… с удивительными свойствами.

Метод золотого сечения — это поиск значений функции на заданном отрезке. Данный метод основывается на принципе деления отрезка в так называемой золотой пропорции. Наибольшее распространение он получил для поиска экстремальных значений при решении задач, связанных с оптимизацией. Кроме математики, метод золотого сечения используется в самых разных сферах, начиная от архитектуры, искусства и заканчивая астрономией. Так, например, известный советский режиссёр Сергей Эйзенштейн использовал его в своей картине «Броненосец Потёмкин», а Леонардо да Винчи – при написании им знаменитой «Джоконды».

Метод золотого сечения применяется и в музыке. Оказалось, что в музыкальных произведениях очень часто встречается эта золотая пропорция. В начале 20 века на заседании Московского музыкального кружка было сделано сообщение, содержащее информацию о том, какое применение находит золотое сечение в музыке. Сообщение с огромным интересом слушали члены музыкального кружка композиторы С. Рахманинов, С. Танеев, Р. Глиэр и другие. Доклад музыковеда Розенова Э.К. «Закон золотого сечения в музыке и поэзии» положил начало исследованиям математических закономерностей, связанных с золотой пропорцией, в музыке. Он проанализировал музыкальные произведения Моцарта, Баха, Бетховена, Вагнера, Шопена, Глинки и других композиторов и показал, что в их произведениях присутствует эта «божественная пропорция».

Кульминация многих музыкальных произведений располагается не в центре, а немного смещена к концу произведения в соотношении 62:38 – это и есть точка золотой пропорции. Доктор искусствоведения, профессор Л. Мазель заметил, изучая восьмитактные мелодии Шопена, Бетховена, Скрябина, что во многих творениях этих композиторов кульминация, как правило, приходится на слабую долю пятого, то есть на точку золотого сечения – 5/8. Л. Мазель считал, что практически у каждого композитора – приверженца гармонического стиля можно найти подобную музыкальную структуру: пять тактов подъёма и три такта спуска. Это говорит о том, что метод золотого сечения активно применялся композиторами сознательно либо бессознательно. Вероятно, такое структурное расположение кульминационных моментов придает музыкальному произведению гармоническое звучание и эмоциональную окраску.

Серьёзное исследование музыкальных произведений на предмет проявления в них золотой пропорции предпринял композитор и музыковед Л. Сабанеев. Он изучил около двух тысяч творений разных композиторов и пришёл к выводу, что примерно в 75% случаев золотое сечение присутствовало в музыкальном произведении хотя бы один раз. Самое большое количество произведений, в которых встречается золотая пропорция, он отмечал у таких композиторов, как Аренский (95%), Бетховен (97%), Гайдн (97%), Моцарт (91%), Скрябин (90%), Шопен (92%), Шуберт (91%). Наиболее пристально он исследовал этюды Шопена и пришёл к выводу, что золотое сечение было определено в 24 этюдах из 27. Только в трёх этюдах Шопена золотая пропорция не была обнаружена. Иногда структура музыкального произведения включала в себя одновременно и симметричность, и золотое сечение. Например, у Бетховена многие произведения делятся на симметричные части, и в каждой из них проявляется золотое сечение.

Как использовать в фотосъёмке

Невозможно дать универсальный совет по композиции кадра. Здесь многое зависит от объектов съёмки, количества важных объектов, наличия второстепенных и совсем не нужных деталей. Используя правило третей в фотографии не следует перегружать кадр важными элементами. Лучше сделать несколько фотографий, в каждой из которых будет доминировать один интересный объект.

Портретная съемка

Снимая портрет нужно сначала выбрать масштаб изображения, а потом использовать правило третей. Если портрет головной, то глаза или хотя бы один глаз должен быть помещён в точку перекрестья линий. На втором месте по значимости обычно располагаются губы. Размещение этих элементов в зрительных центрах кадра позволяет усилить общее впечатление от портрета.

В поясном портрете присутствуют руки. В некоторых случаях они могут доминировать . Когда человек смотрит в объектив или вдаль выше головы фотографа, а руки скрещены на груди, то именно они должны находиться в зоне притяжения, в соответствии с правилом третей. Такая поза свидетельствует о силе и целеустремлённости, а положение рук, подчёркивает это. При ростовом портрете одного человека его не следует помещать в центр фотографии. Лучше снимать его, если он будет находиться в левой или правой трети снимка. Размещение человека в левой стороне предпочтительнее, так как чтение вырабатывает устойчивую привычку просматривать любое изображение слева направо. Группы людей лучше всего размещать на двух уровнях. Так снимали групповые портреты ещё в ХХ веке. Первый ряд или группа людей сидит, а следующая за ними стоит в полный рост. Тем самым они располагаются на двух горизонталях точно по правилу третей. Психология восприятия даёт фотографам ещё один важный совет. Самый главный или доминирующий объект следует помещать в правую нижнюю точку центрального прямоугольника.

Пейзажная съемка

При съёмке пейзажных фотографий важная функция отводится линии горизонта

Особенно важно если это прямая линия, как на морских пейзажах. В зависимости от того, где находятся интересные объекты, на море или на суше, следует выбирать место нахождения линии горизонта. В любом случае эта линия должна совпадать с одной из двух горизонталей по правилу третей

При этом фотография чётко делится на три части, из которых две части составляет суша и одна часть море или наоборот. Точно так же можно снимать поля пшеницы, равнину или пустынные барханы на фоне неба

В любом случае эта линия должна совпадать с одной из двух горизонталей по правилу третей. При этом фотография чётко делится на три части, из которых две части составляет суша и одна часть море или наоборот. Точно так же можно снимать поля пшеницы, равнину или пустынные барханы на фоне неба.

Природа

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни»

Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

X : Y = Y : X+Y.

В результате получается уравнение: х2 – х – 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Принцип золотого сечения. Успешное творение или правило золотого сечения

Запечатление момента – именно в этом заключается миг творения художника или фотографа. Кроме вдохновения, мастер должен следовать строго определенным правилам, коими предстают: контраст, размещение, равновесие, правило соблюдения третей и многие другие. Но приоритетным все же признается правило золотого сечения, оно же правило третей.

Просто о сложном

Если в упрощенном виде преподносить основу правила золотого сечения, то фактически — это деление воспроизводимого момента на девять равных частей (три по вертикали на три по горизонтали). Впервые специально его ввел Леонардо да Винчи, выстраивая все свои композиции в этой своеобразной сетке. Именно он практически подтвердил, что ключевые элементы изображения должны быть сосредоточены в точках пересечения вертикальных и горизонтальных линий.

Правило золотого сечения в фотографии подлежит определенной коррекции. Кроме девятисегментной сетки рекомендуется использовать и так называемые треугольники. Принцип их построения основывается на правиле третей. Для этого из крайней верхней точки проводится диагональ в нижнюю, а из противоположной верхней – луч, делящий уже существующую диагональ в одной из внутренних точек пересечения сетки. Ключевой элемент композиции должен быть отображен в среднем по величине из получившихся треугольников. Здесь стоит сделать ремарку: приведенная схема построения треугольников отображает лишь их принцип, а, значит, имеет смысл экспериментировать с приведенной инструкцией.

Как использовать сетку и треугольники?

Правило золотого сечения в фотографии действует по определенным нормам в зависимости от того, что изображается на ней.

Фактор горизонта. Согласно правилу третей, его следует располагать по горизонтальным линиям. При этом, если запечатляемый объект находится выше уровня горизонта, то фактор проходит через нижнюю линию, и наоборот.

Расположение главного объекта. Классическим считается такое расположение, при котором центральный элемент находится в одной из точек пересечения. Если фотограф выделяет два объекта, то они должны быть по диагонали или в параллельных точках.

Использование треугольников. Правило золотого сечения в рассматриваемом случае отступает от канонов, но незначительно. Объект не обязан располагаться в точке пересечения, но находится максимально близко к ней в среднем треугольнике.

Направление. Используется данный принцип съемки в динамичной фотографии и заключается в том, что перед движимым объектом должно оставаться две трети пространства снимка. Это обеспечит эффект перемещения вперед и указание цели. В противном случае фотография может остаться недопонятой.

Корректировка правила золотого сечения

Несмотря на то, что правило третей в существующей теории построения композиции считается классическим, всё больше фотографов склонны отказываться от него. Мотивация у них проста: анализ картин известных художников показывает, что правило золотого сечения не выдерживается. С данным утверждением можно поспорить.

Рассмотрим всем известную Джоконду, которую противники использования правила третей приводят в качестве примера (забывая, что сам да Винчи стоял у истоков его практического использования). Их аргументами служит то, что мастер не посчитал нужным расположить ключевые элементы картины по точкам пересечения, как этого требует классическое изображение. Но они упускают из вида фактор горизонтальных линий, согласно которому голова и торс изображаемой расположены таким образом, что силуэт в целом не «режет глаз». Кроме того, в данном произведении в большей степени использована спираль, о которой в большинстве случаев забывают теоретики фотографии. И так можно опровергнуть утверждения относительно практически каждого творенияя, приводимого в качестве примера.

Правило золотого сечения можно использовать, а можно отказаться от него, если требуется подчеркнуть дисгармоничность композиции. Однако утверждать, что оно не является ключевым в формировании арт-объекта, невозможно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector