Пример расчета буронабивных свай: по несущей способности, минимальному расстоянию
Содержание:
- Количество свай
- Вычисление ординат эпюры дополнительного давления σzp,i
- Факторы, влияющие на длину опор
- Расчет ростверка
- Определение среднего вертикального давления р под подошвой условного фундамента и проверка выполнения условия р
- . Расчет конечной (стабилизированной) осадки свайного фундамента методом послойного суммирования для внутренней стены
- Как сделать столбчатый фундамент своими руками: пошаговая инструкция
- Расчет фундамента на изгиб
- 5.2 Определение количества свай и размещение их в ростверке
- Расчет
- Расчет свайного фундамента
- МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
- МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
- Кафедра механики грунтов, оснований и фундаментов
- Расчет одиночной сваи в составе фундамента по первой группе предельных состояний (по несущей способности грунта основания сваи)
Количество свай
Количество свай определяется исходя из таких параметров:
- проектный вес сооружения;
- сопротивление грунта;
- допустимая нагрузка одного конструктивного элемента;
- выбранный шаг между опорами.
Зная суммарную нагрузку на основание, делят показатель на несущую способность одной сваи и получают необходимое количество силовых элементов. Затем пересчитывают суммарную нагрузку на грунт с учетом веса основания, делят на опорную площадь фундамента и сравнивают результат с сопротивлением грунта.
Если остается риск проседания почвы, то увеличивают опорную площадь фундамента, выбирая сваи прочнее или уменьшая шаг между конструктивными элементами.
Оптимальное расстояние
Минимально допустимое расстояние между двумя опорными элементами равно трем диаметрам свай (не меньше одного метра). Исключение составляет технология с монтажом опор под наклоном. В этом случае сваи можно расставлять с шагом в 1,5 диаметра.
Согласно общепринятой классификации, максимальное расстояние между опорами может быть равным 6 диаметрам (не больше 3 метров). Для всех типов свай оптимальным считается шаг в 1,5 – 2 метра.
Основные схемы размещения
Как правило, сваи размещают по периметру сооружения, а также под несущими стенами при условии, что каждый угол конструкции удерживает как минимум один силовой элемент. Для малогабаритных построек сваи можно располагать в один ряд или несколько (параллельно или в шахматном порядке, выдерживая допустимый шаг).
Вычисление ординат эпюры дополнительного давления σzp,i
Сначала вычисляется верхняя ордината эпюры σzp,о непосредственно под подошвой
фундамента при z = 0:
кПа
Затем вычисляются другие |
, кПа0,2, |
|||||
0 0,8 1,6 2,4 |
0 0,79 1,58 2,38 |
1,000 0,881 0,642 0,477 |
186,14 163,99 119,50 88,79 |
0,72 0,72 0,72 0,72 |
25,50 |
Песок мелкой крупностью |
3,2 4,0 4,8 5,6 6,0 6,4 |
3,17 3,96 4,75 5,54 5,94 |
0,374 0,306 0,258 0,223 |
69,62 56,96 48,02 41,51 |
0,72 0,72 0,72 0,72 0,72 |
41,32 42,14 |
Факторы, влияющие на длину опор
От правильного определения длины свай зависит крепость будущей конструкции, и если эти важные элементы фундамента окажутся короткими, дом может просесть под своей тяжестью после его введения в эксплуатацию. Длина свай определяется с учетом анализа грунта и ландшафта, а именно:
- Плотность почвы.
- Перепад высоты между разными точками участка.
Плотность грунта
Глубина погружения опоры Анализ грунта лучше всего проводить на основании геологических исследований местности. Если исследования характеристики грунтов не проводились на данной территории, то можно воспользоваться упрощенным методом выяснения его плотности.
Итак, нужно выкопать неглубокую канаву (до 1 м) в нижней точке участка. Если на такой глубине залегания вы увидите глинистую массу или песок, то выбор лучше сделать в пользу свай, длина которых достигает 2,5 м. В том случае если вы обнаружите породы с низкой плотностью (торф), плывун или грунтовые воды, придется продолжить углубление до тех пор, пока не дойдете до твердых пород. Здесь устанавливаются сваи, длина которых равна длине бура.
Перед вами таблица плотности и несущей способности различных почв.
Вид грунта | Плотный грунт | Грунт средней плотности |
Песок (крупная фракция) | 6 | 5 |
Песок (средняя фракция) | 5 | 4 |
Супесь (в сухом виде) | 3 | 2.5 |
Супесь пластичная (влажная) | 2.5 | 2 |
Песок (мелкая фракция) | 4 | 3 |
Песок влажный (мелкая фракция) | 3 | 2 |
Глина | 6 | 2.5 |
Глина влажная | 4 | 1 |
Суглинок | 3 | 2 |
Суглинок влажный | 3 | 1 |
Расчет ростверка
Расчет ростверка свайного фундамента выполняется примерно так же, как и вычисления для ленточного типа опорной части дома. Чтобы рассчитать ширину ленты потребуется воспользоваться формулой:
В = М/L*R, где
B — необходимая ширина ростверка;
М — масса дома (за вычетом массы свай);
L — длина ростверка;
R — несущая способность грунта (слоя у поверхности).
Этот расчет подойдет для ленты, расположенной непосредственно на земле или с небольшим заглублением. Для висячего ростверка расчет будет более сложным, выполнять его самостоятельно проблематично.
Армирование ростверка
Подобрав ширину ростверка буронабивного фундамента, необходимо грамотно его армировать. Можно использовать требования к стальным стержням из СП «63.133301.2012».
В качестве материала для армирования выбирают пруты класса А400 (Alll). Максимально допустимый диаметр рабочих прутов — 40 мм. Минимальные значения приведены в таблице.
Вид арматуры | Диаметр прутов | |
Продольная (рабочее) | длина стороны ростверка меньше 3м | общее сечение всего армирования = 0,001*В*H, где B— ширина ростверка, а H — высота. По площади сечения диаметр находят с помощью сортамента арматуры. Количество стержней принимается четным (одинаковое число сверху и снизу). Диаметр назначают не менее 10 мм |
длина стороны ростверка больше 3м | то же, но диаметр назначают не менее 12 мм. | |
Поперечное (горизонтальное) | 6 мм | |
Вертикальное при высоте ростверка меньше 80 см | 6 мм | |
Вертикальное при высоте ростверка больше 80 см | 8 мм |
Пример расчета свайного буронабивного фундамента
Исходные данные для расчета:
- одноэтажный кирпичный дом с мансардой, толщина стены 380 мм;
- размеры в плане 7 на 9 метров, внутренних несущих стен нет (только перегородки), высота этажа 3 м;
- кровля стропильная мансардная с покрытием из металлочерепицы;
- грунты на участке — полутвердая глина с коэффициентом пористости 0,6, залегает на 3 м, R = 72 т/м2, fin = 3,5 т/м2 (взято значение для глубины 1 м).
Сбор нагрузок удобнее выполнять в табличной форме. Необходимо не забывать коэффициенты по надежности.
Нагрузка | Величина, кг |
Наружные кирпичные стены 380 мм | (9 м(длина)*2 шт + 7 м (ширина)*2 шт)*4,5м(высота на первом этаже + на мансарде)*0,38 м*1800 кг/м3 (плотность кирпича)*1,2 (коэффициент) = 118200 кг |
Перегородки из гипсокартона без шумоизоляции высотой 2,7 м (от пола до потолка) | 30 м (длина на весь дом)*2,7 м (высота)*27,2 кг*1,2 = 2645 кг |
Железобетонные монолитные перекрытия толщиной 200 мм | 2шт (на 2 этажа) *7 м (ширина дома )*9 м (длина дома)*160 кг/м2 (средняя масса перекрытия на кв. м) *1,3 = 26210 кг |
Кровля | 7 м*9 м*60 кг (масса кв. метра кровли из металлочерепицы) *1,2 (коэффициент надежности) /соs30ᵒ (угол наклона ската) = 5215 кг |
Полезная нагрузка на перекрытия (2 шт., пол первого и пол второго этажей) | 2 шт *7 м*9 м*150 кг/м2 (нормативное значение для жилья) *1,2 = 22680 кг |
Снег (нормативное значение снеговой нагрузки взято для г. Москва) | 7м*9м*180 кг (нормативное значение) *1,4/cos30° = 13050 кг |
Ростверк предварительно принимаем шириной 0,4 м и высотой 0,5 м. Длина буронабивной сваи предварительно — 3 м, сечение диаметром 40 см, устанавливаются с шагом 1,5 м.
Количество свай = 32 м (L, длина ростверка)/1,5 м (шаг свай) +1 = 22 шт. (округляем до целых в меньшую сторону). S = 3,14*0,42/4 (формула площади через диаметр, см. ранее) = 0,126 м2.
Масса ростверка: 0,4м *0,5 м *32 м (длина) *2500 кг/м3 (плотность ж/б)* 1,3 (коэффициент) = 20800 кг.
Масса свай: 22 шт.*3 м *0,126 м2 *2500 кг/м3 *1,3 = 27030 кг.
Суммарная масса всего дома = 235830 кг = 236 т.
Нагрузка на погонный метр = Q = 236 т/32 м = 7,36 т/м.
Определение среднего вертикального давления р под подошвой условного фундамента и проверка выполнения условия р
Для вычисления р необходимо определить площадь подошвы условного
ленточного фундамента Аусл и нагрузки, передающиеся на эту площадь от
собственного веса всех элементов, входящих в объем условного фундамента, а
также и от сооружения.
а) Площадь условного ленточного фундамента:
—
среднее значение угла внутреннего трения грунтов, залегающих в пределах рабочей
длины сваи .
= 1,01
б)
Объемы условного фундамента, всех входящих в него конструктивных элементов и
грунта:
условного
фундамента:
ростверка:
части
стены подвала, расположенной ниже верха условного фундамента (ниже отметки пола
подвала):
части
пола подвала (справа и слева от стены подвала):
грунта:
Объем
свай не вычитается из объема . При
подсчете веса грунта в условном фундаменте . не
учитывается увеличение его удельного веса за счет уплотнения при забивке свай.
Принимается,
чт
в)
Нагрузки от собственного веса всех составных частей условного фундамента и от
сооружения:
ростверка
и всей надростверковой конструкции, то есть всей стены подвала, включая ее
часть, расположенную выше отметки DL:
Q
= QP + Qнк = 45,6 кН;
части
пола подвала ;
свай
(1,03 сваи с рабочей длиной lсв = 3,9 м, из которых 0,1 м — в водонасыщенном
грунте):
грунта
в объеме условного фундамента:
Среднее
давление р под подошвой условного фундамента:
Вычисление
расчетного сопротивления R по формуле (7) СНиП для песка мелкой крупности,
(IV слой), залегающего под подошвой условного
фундамента.
где
;
= 1,0
;=1
, , ;
=1
;
м3,
.
Условие
р ≤ R выполняется: 315,74 < 967,66. Расчет осадки методами,
основанными на теории линейного деформирования грунта, правомерен, поэтому
далее производится расчет осадки методом послойного суммирования.
. Расчет конечной
(стабилизированной) осадки свайного фундамента методом послойного суммирования
для внутренней стены
Как сделать столбчатый фундамент своими руками: пошаговая инструкция
Перед началом всех работ необходимо изучить грунтовое основание, определить уровень грунтовых вод, а также произвести качественный расчет необходимого количества опорных столбов, варианта их исполнения. Только потом можно приступать к подготовке строительной площадки.
Видео о том, как можно сделать столбчатый фундамент своими руками:
Расчет
Для того, чтобы грамотно выполнить расчет, можно нанять для этого квалифицированных специалистов, либо воспользоваться специальными компьютерными программами.
Благодаря точному расчету можно получить необходимое количество столбов, их площадь сечения, а также необходимый показатель заглубления. Количество опор расчет обычно выдает минимальное: если выполнить их с меньшим шагом, то это позволит возвести более надежное строение.
На фото чертежи столбчатого фундамента с размерами:
Земляные работы
Вначале необходимо снять с участка плодородный слой грунта. В среднем, этот размер составляет 20 сантиметров. Далее необходимо обозначить места установки опорных столбов. При помощи бура выполняются скважины определенной глубины и размера. Для более качественного обустройства разметки будущей системы можно воспользоваться геодезическим теодолитом.
Устройство подушки под столбы
Под подушкой подразумевают слой песка, толщина которого обычно не более 30 сантиметров. После засыпки, песок необходимо утрамбовать. В большинстве случаев, для выполнения данного этапа работ используют бревно небольшого сечения.
Песок отводит лишнюю грунтовую влагу от опорных столбов. Далее выполняется бетонный слой, толщиной от 10 до 30 сантиметров. Он служит опорой для будущей конструкции.
Выполнение опалубки
При выполнении опалубки стоит учитывать вид грунта. Если на строительной площадке глинистая почва, то возведение опалубки может не потребоваться, так как глина не обваливается. Если же грунт представляет собой песок, то данная конструкция выполняется из деревянных досок, либо аналогичных плоских материалов. При первом варианте обязательной технологией будет служить укладка рубероида в скважины. Он будет выполнять не только роль стенок, но и гидроизоляции.
Если в качестве материала для опалубки выбирается натуральная древесина, то специалисты рекомендуют тщательно смочить ее водой. В противном случае она будет впитывать влагу из раствора бетона, тем самым ухудшая его качественные показатели.
Армирование
Армирование опорных столбов проводится обязательно, так как именно оно сдерживает нагрузки. Железная арматура нарезается на необходимого размера куски и связывается между собой в каркас
В данном случае очень важно сложить отдельные изделия относительно друг друга. Каркас опускается в скважину строго посередине
Только после этого можно заливать бетон.
Заливка бетона
При заливке бетонного раствора необходимо простукивать опалубку, чтобы удалить лишний воздух и выполнить качественные столбы. Бетонный раствор при стандартном замешивании должен состоять из одной части цемента, двух частей песка, а также трех частей щебня. Столбы необходимо не трогать 28 дней. Только после этого они будут иметь необходимую прочность.
Гидроизоляция
Так как отдельным элементам угрожает почвенная и атмосферная влага, очень важно выполнить качественную гидроизоляцию столбов. От поверхностной влаги конструкцию обычно защищает отмостка
Также можно использовать влагозащитный бетон.
Поверх подушки обязательно следует положить гидроизоляционный слой, который может быть выполнен из рубероида. Стенки ямы также следует защитить гидроизоляционным материалом.
Утепление
Утепление снаружи более распространено, так как оно сохраняет показатели прочности бетона, не пропускает холод внутрь дома, а также является дополнительной зашитой от влаги. Данный этап работ можно выполнить с помощью пенопласта, пеноплекса, а также экструдированного пенополистирола. Слой утеплителя необходимо выполнить на основании и вокруг самих опор.
Расчет фундамента на изгиб
Многие строители не раз сталкивались с проблемой изгиба несущей конструкции через неверно подобранные материалы или ошибки в расчетах. Соответственно, смета уже никуда не годится, ее нужно оперативно переделывать и проводить новые расчеты. Поэтому в строительных нормах четко указано, что расчет на изгиб проводится только в сечении по грани колонны и по внешнему контуру ростверка.
Есть несколько методик расчетов на изгиб, но подбираются они в каждом конкретном случае индивидуально, исходя от внешних условий. Самый быстрый вариант – это суммирование всех моментов от реакций запроектированных свай, дополнительно учитываются локальные нагрузки.
Схема армированной сваи.
Но такая методика используется, если используются железобетонные сваи. А вот когда используется стальная свайная конструкция, тогда лучше брать методику расчета по сечению колонн. Также таким методом рассчитывается и необходимое количество, и допустимый максимальный диаметр арматуры.
5.2 Определение количества свай и размещение их в ростверке
Необходимое
количество свай в грунте определяется
по формуле
(13)
Определим
расчетное расстояние между осями свай
на 1 п.м. стены:
Принимаем
однорядную систему расположения свай.
Определяем
размеры ростверка в плане:
-расстояние
от края ростверка до боковой грани сваи
;
-ширина
ростверка :
где
— расстояние между рядами свай;
—
расстояние от края ростверка до боковой
грани свай;
—
число рядов
Тогда
b=0,3+2*0,11=0,52м
Принимаем
ширину ростверка b=0,52м
и высоту h=0,5м.
Рисунок
5 — Схема конструирования ростверка
Определяем
фактическую нагрузку, приходящуюся на
однусваю, которая должна быть меньше
допустимой:
(14)
Условие
выполняется, фундамент запроектирован
правильно.
Расчет
Расчетное сопротивление грунта основания
Данные для расчета взяты из СП 22.13330.2011 (Актуализированная редакция СНиП 2.02.01-83*).
, где
коэффициент условий работы, принимаемые по таблице 5.4;
коэффициент условий работы, принимаемые по таблице 5.4;
коэффициент, принимаемый равным единице, если прочностные характеристики грунта ( и ) определены непосредственными испытаниями, и k = 1,1, если они приняты по таблицам приложения Б;
ширина подошвы фундамента, м;
осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих ниже подошвы фундамента, кН/м3;
осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих выше подошвы фундамента, кН/м3;
расчетное значение удельного сцепления грунта, залегающего
непосредственно под подошвой фундамента (см. 5.6.10), кПа;
угол внутреннего трения грунта основания;
коэффициенты, принимаемые по таблице 5.5;
коэффициенты, принимаемые по таблице 5.5;
коэффициенты, принимаемые по таблице 5.5;
Коэффициент, принимаемый равным единице при b < 10 м; kz= z0 ÷ b+ 0,2 при b ≥ 10 м (здесь z0 = 8 м)
глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8);
глубина подвала, расстояние от уровня планировки до пола подвала, м;
Более подробную информацию можно посмотреть: Расчет сопротивления грунта основания
Данные для расчета взяты из приложения В СП 22.13330.2011 (СНиП 2.02.01-83*).
Формула при d ≤ 2:
, где
расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;
ширина проектируемого фундамента, м;
глубина заложения проектируемого фундамента, м;
ширина фундамента равная 1м (Ro);
глубина заложения фундамента равная 2м (Ro).
Формула при d>2:
, где
расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, — k2 = 0,25, супесями и суглинками — k2 = 0,2 и глинами — k2 = 0,15;
ширина проектируемого фундамента, м;
глубина заложения проектируемого фундамента, м;
ширина фундамента равная 1м (Ro);
глубина заложения фундамента равная 2м (Ro);
расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м3.
Расчет свайного фундамента
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ
СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
Кафедра механики грунтов, оснований и
фундаментов
Курсовой проект
Выполнила студентка Фролова Т.А.
курс 5 семестр ПГС (уск.) г. Смоленск
Преподаватель Гусева Е.С.
2015 г.
1. Определение
размеров конструктивных элементов свайного фундамента и разработка его
конструкций для наружной стены
2. Расчет
конечной (стабилизированной) осадки свайного фундамента методом послойного
суммирования для наружной стены
. Определение
размеров конструктивных элементов свайного фундамента и разработка его
конструкций для внутренней стены
. Расчет
конечной (стабилизированной) осадки свайного фундамента методом послойного
суммирования для внутренней стены
. Подбор
сваебойного оборудования
. Проектирование
котлована
. Сравнение
вариантов и вывод
Список литературы
1. Определение размеров конструктивных элементов свайного фундамента и
разработка его конструкций для наружной стены
Расчет одиночной сваи в составе фундамента по первой группе предельных состояний (по несущей способности грунта основания сваи)
Расчет предусматривает проверку выполнения условия I предельного
состояния:
F —
расчетная нагрузка передаваемая на сваи т.е. фактическая нагрузка:
—
расчетная несущая способность грунта основания одиночной сваи (несущая
способность сваи по грунту);
— расчетная
нагрузка, допускаемая на сваю.
—
коэффициент надежности.
Вычисление
фактической нагрузки F, передаваемой на сваю.
Вес
ростверка QP = 1,6·1·0,5·24 = 19,2кН;
Вес
надростверковой конструкции Qнк (одного пог. м стены подвала) из 5 блоков
ФБС24.4.6: Qнк = (0,4·0,6·1·4) ·22 = 26,4 кН;
Общий
вес Q ростверка и надростверковой конструкции:
=
QP + Qнк = 19,2 + 26,4 = 45,6 кН;
При
вычислении QP и Qнк приняты удельные веса:
Пригрузка
внутреннего обреза ростверка бетонным полом подвала GП:П = 0,1·0,2·1·22 = 0,44
кН.
Общий
вес G пригрузки ростверка грунтом и полом подвала:= GП = 0,44 = 0,44 кН.
Расчетная
допускаемая нагрузка на сваю
Условие
F < Pсв выполняется.
Принятые
размеры свайного фундамента будут считаться окончательными при удовлетворении
условия расчета по второму предельному состоянию — по деформациям.