Допустимая норма радиации для человека: дозы в мкр/ч, зивертах и микрозивертах
Содержание:
- Что такое естественная радиоактивность материалов
- Немного теории: что такое радиация
- Виды радиационного фона
- Смертельная доза
- Опасность радиации
- Чем и как ведётся измерение радиации
- Неблагополучные районы Москвы
- Употребление йода может защитить от радиационного заражения
- Норма радиоактивного излучения
- Щит от радиации
- Защита от облучения
- Беларусь
- Европа
- Знак радиационной опасности
- Продукты, снижающие уровень радиации в организме
- Действующие нормы радиационного фона
- Чем опасны радиоактивные камни?
- Какой естественный радиационный фон подходит для человека
- Примечания
Что такое естественная радиоактивность материалов
Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.
К наиболее вредным строительным материалам причисляют:
- гранит
- кварцевый диорит
- графит
- туф
- пемзу
Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного.
Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.
Распространенные заблуждения о радиоактивности некоторых стройматериалов
Радиоактивность древесины выше, чем кирпича. Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов. При этом самыми высокими оказались показатели, снятые в деревянных строениях. На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.
Бетон – опасный радиоактивный материал. Мнение о высокой радиоактивности бетона распространилось после серии статей о повышенном радиационном фоне в панельных домах. На самом деле это не так. Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома. Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролируют, а в качестве сырья используют щебень, добытый из сертифицированных мест.
Но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала существует. Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий. Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.
В чем опасность радиоактивных строительных материалов
Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.
Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.
Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:
- головные боли,
- аллергия,
- плохое самочувствие.
Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.
Как проверить стройматериал на радиоактивность
Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009). Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф). Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.
Дозиметр поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.
Немного теории: что такое радиация
Я постараюсь рассказать максимально незанудно и упрощённо (да простят меня физики).
По-простому радиация — это некоторое вредное (ионизирующее) излучение, которое, проходя через клетки живых организмов, способно их портить (неправильно изменяя их состав).
Что такое излучение, и почему оно бывает вредным? Обычно под излучением понимают некий поток энергии — электромагнитных волн или элементарных частиц. Волна — это что-то неосязаемое (например, свет или радиосигнал), а частица — это то, что имеет какую-то массу (например, нейтрон — элементарная частица, входящая в состав ядер атомов), но руками их потрогать всё равно не выйдет — слишком уж маленькие, меньше атомов.
Электромагнитные волны условно можно поделить на следующие категории:
- радиоволны — на их основе работает практически вся наша связь;
- инфракрасное излучение;
- видимый свет — это волны, которые мы видим нашими глазами;
- ультрафиолетовое излучение;
- рентгеновское излучение — на его основе работает рентген (спасибо, кэп!);
- жёсткое излучение (или гамма-излучение).
Радиация преимущественно состоит из потока частиц (альфа, бета, нейтронов и других — как правило, поток частиц всегда будет ионизирующим) и/или потока рентгеновских и гамма волн (эти две категории относятся к ионизирующему излучению).
Откуда берётся радиация?
Как правило, основные источники радиации следующие:
- радиоактивный распад — некоторые вещества не являются стабильными, и их атомы самопроизвольно распадаются с течением времени, побочным эффектом является радиоактивное излучение;
- ядерные реакции — обычно протекают в реакторах атомных станций или же во время ядерного взрыва, очень редко в природе;
- космос — космические и солнечные лучи (солнце — природный термоядерный реактор).
Как и в чём измеряется уровень радиации?
Для того, чтобы измерить уровень радиации, необходимо иметь специальный прибор — дозиметр. Уровень радиации измеряется в разных величинах в зависимости от целей измерения, но, поскольку я рассматриваю радиацию с точки зрения её воздействия на человека, то я буду использовать зиверты (Зв) — единицы измерения эффективной дозы радиации, которая условно отражает полученный организмом вред. Очень условно можно считать, что 1 зиверт равен 100 рентгенам.
Какой уровень радиации опасен для здоровья?
При сильном или длительном облучении организма наступает хроническая лучевая болезнь, при очень сильном — острая лучевая болезнь. Как правило, дозы свыше 1 Зв считаются смертельно опасными. В случае неоказания медицинской помощи дозы порядка 3-5 Зв приводят к смерти в течении нескольких месяцев в половине случаев. Дозы свыше 10 Зв абсолютно смертельны и приводят к неминуемой смерти в течение нескольких суток. Доза в 120 Зв или выше убивает человека сразу.
Виды радиационного фона
Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.
Виды фона:
- Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
- Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
- Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.
Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.
Смертельная доза
В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.
Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.
Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.
Существуют такие цифры:
- Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
- Угроза для жизни – дозировка более 3000 мЗв.
- Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
- Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.
Однократное облучение приведет к:
- 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
- 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
- 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
- 10-80 Зв – кома, смерть через 5-30 мин.
- От 80 Зв – смерть мгновенно.
Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.
Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.
Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.
Опасность радиации
«Излучение – это энергия, излучаемая нестабильными атомами. Нестабильные атомы были естественным образом образованы в начале вселенной более 4 миллиардов лет назад», – объясняет Джон Э. Шанахан, президент организации по защите окружающей среды по ядерной энергии в США.
“Многие из этих нестабильных атомов испускают достаточно энергии (излучения) сейчас, чтобы быть стабильными и больше не испускать излучения. Другие нестабильные атомы испускают излучение настолько медленно, что они все еще нестабильны. Это и называется «естественным излучением», которое можно измерить в земле, воде и воздухе”.
Независимо от того, где вы живете, везде можно найти некоторое естественное излучение. Международное агентство по атомной энергии (МАГАТЭ) оценивает, что радиационное облучение от природных источников, таких как радон и торон, составляет в среднем 2,4 миллисиверта (мЗв) в год, хотя оно может колебаться на несколько сотен процентов. Для сравнения, один рентген грудной клетки дает дозу облучения 0,2 мЗв.
По данным Международной комиссии по радиологической защите, «радиационный работник» (например, работающий на атомной электростанции) должен быть ограничен 100 мсв в течение пяти лет.
Есть три главных виновника, из-за которых производятся радиоактивные элементы в природе: почва, камни и космические лучи, которые пробиваются к нам из космоса.
Чем и как ведётся измерение радиации
Величин измерения радиационного излучения множество, и они будут интересны, скорее, узким специалистам, поэтому необходимо упростить задачу и назвать только самые основные для бытового применения.
Излучение, воздействующее на любой живой организм, называют эквивалентной дозой. Рассчитать её довольно просто: поглощённая организмом доза в пересчёте на вес тела умножается на коэффициент повреждения. Полученное число – единица измерения в зивертах, или сокращённо Зв. Естественный фон в 0,7 мЗв в час соответствует приблизительно 70 рентгенам в час, или сокращённо 70 мкР/ч. Зная эту величину, легко определить, является ли она опасной для человека.
Нормой радиации для человека мкР/ч являются показатели 20-50. Следовательно, такой радиационный фон является завышенным. Но необходимо осветить ещё один момент для понимания – влияние времени. То есть если сразу уйти из такой неблагоприятной зоны, а не находиться там сутками, то облучение не превысит допустимые нормы радиации для человека.
Измерение радиационного фона производится специальными приборами – дозиметрами. Их принято различать на профессиональные и бытовые. Вся разница в величине погрешности, которую они могут допускать. У профессиональных она должна составлять не более 7%, а у бытовых она может быть свыше 25%.
Неблагополучные районы Москвы
По мнению специалистов, получить порцию облучения в столице, пусть и не смертельно опасную, но и не полезную, вполне реально. Они выделяют следующие неблагоприятные зоны:
- Тропаревский лесопарк;
- Р-н Люблино;
- Крылатское;
- Строгино;
- «Зеленая горка» (б-р Рокоссовского) — радиоактивное захоронение;
- Район гостиницы «Украина»;
- «Щербинка» — участок захоронения радиоактивных отходов Подольского завода;
- Город Сергиев Посад — довольно обширная радиоактивная свалка;
- Озеро Солнечное;
- Жестовский карьер;
- 24 километр Ленинградского шоссе — здесь расположен завод НИИ Центра испытаний безопасности радиации космических объектов.
Основная опасность перечисленных зон связана с близким расположением захоронений отходов.
Употребление йода может защитить от радиационного заражения
Ложь
Употребление йода либо каких-нибудь его соединений абсолютно не противостоит негативному воздействию радиации. Так почему же медиками рекомендуется принятие йода, когда происходят техногенные катастрофы, при которых происходит выброс радионуклидов в атмосферу? А все потому, что когда в атмосфере или в воде обнаруживается присутствие радиоактивного йода-131, он весьма стремительно проникает в организмы людей. После чего происходит его накопление в щитовидных железах, с резким повышением рисков по развитию рака и прочих болезней, связанных с этими «нежными» органами. Заблаговременно «наполнив по максимуму» йодные депо в щитовидных железах, можно снизить захват радиоактивного йода и, следовательно, предохранить ткани от дальнейших накоплений радиации.
Норма радиоактивного излучения
Институт медико-биологических проблем формирования здоровья в Москве пришел к выводу, что продолжительность жизни на 20% зависит от состояния здоровья, еще на 20% от окружающей среды, на 10% от уровня медобслуживания и на 50% от образа жизни, режима питания и отдыха. Радиоактивное излучение составляет 5% экологическим проблем цивилизации.
Какие бывают нормы радиоактивности?
Радиоактивное облучение техногенного характера совместно с естественными источниками не должно превышать индивидуальную предельно допустимую дозу (ИПДД).
НРБ – нормы радиационной безопасности, выделяют 2 категории граждан, подвергающихся воздействию радиации.
Категория А – профессиональные сотрудники, которые работают с источниками ионизирующих излучений.
Категория B – часть населения, вынужденная проживать или работать в местах, где могут находиться радиоактивные вещества.
При ликвидации аварий превышение дозовых пределов допускается только ради спасения жизни людей и отсутствия возможности принять меры защиты.
Участвовать в спасательных мероприятиях могут только мужчины старше 30 лет, при их добровольном согласии в письменном виде, после полного информирования о возможных последствиях для здоровья.
Щит от радиации
Для защиты от гамма-излучения наиболее эффективны тяжелые элементы, такие как свинец. Чем больше номер элемента в таблице Менделеева, тем сильнее в нем проявляется фотоэффект. Степень защиты зависит и от энергии частиц излучения. Даже свинец ослабляет излучение от цезия-137 (662 кэВ) лишь в два раза на каждые 5 мм своей толщины. В случае кобальта-60 (1173 и 1333 кэВ) для двукратного ослабления потребуется уже более сантиметра свинца. Лишь для мягкого гамма-излучения, такого как излучение кобальта-57 (122 кэВ), серьезной защитой будет и достаточно тонкий слой свинца: 1 мм ослабит его раз в десять. Так что противорадиационные костюмы из фильмов и компьютерных игр в реальности защищают лишь от мягкого гамма-излучения.
Бета-излучение полностью поглощается защитой определенной толщины. Например, бета-излучение цезия-137 с максимальной энергией 514 кэВ (и средней 174 кэВ) полностью поглощается слоем воды толщиной в 2 мм или всего 0,6 мм алюминия. А вот свинец для защиты от бета-излучения использовать не стоит: слишком быстрое торможение бета-электронов приводит к образованию рентгеновского излучения. Чтобы полностью поглотить излучение стронция-90, нужно менее 1,5 мм свинца, но для поглощения образовавшегося при этом рентгеновского излучения требуется еще сантиметр!
Защита от облучения
Если вы при помощи собственного дозиметра заметили, что радиационный фон в Москве или Московской области повышен, то первым делом нужно обратиться:
- в службу радиоактивной безопасности «Радон»;
- к оперативному дежурному Главуправления по гражданской обороне и ЧС Москвы;
- в Центр государственного санэпиднадзора Москвы, отдел радиологии.
Затем следует плотно заняться своей безопасностью:
- оградить себя временной преградой от излучения;
- использовать специальные средства защиты;
- немедленно покинуть зону с повышенным радиационным фоном в Москве, постараться проводить там поменьше времени.
Напомним простые средства, которые вас защитят от облучения:
- альфа — обычный бумажный лист;
- бета — стекло;
- гамма — свинец;
- нейтроны — вода.
Беларусь
Замером радиационной обстановки в нашей стране Белгидромет. Сегодня в Беларуси работает 41 пункт наблюдений радиационного мониторинга. Ежедневно, в том числе по выходным и праздникам, специалисты делают замеры мощности дозы гамма-излучения.
Однако, как «Еврорадио» начальник службы радиационного мониторинга Белгидромета Михаил Коваленко, радиационная обстановка в стране за все время инцидента на военном полигоне в Архангельской области оставалась стабильной, каких-либо изменений зафиксировано не было.
В областных городах Беларуси среднегодовой уровень мощность дозы гамма-излучения находится в пределах от 0,10 до 0,12 мкЗв/ч. Повышенный уровень фиксируется только в Брагине и Славгороде, пострадавших от аварии на ЧАЭС.
Европа
Группа по мониторингу радиоактивности окружающей среды (The Radioactivity Environmental Monitoring) — это служба Объединенного исследовательского центра Европейской комиссии. На ее можно получить информацию об уровне радиоактивности окружающей среды не только в Европе, но и на американском континенте.
К сожалению, по мнению специалистов этого сервиса, Беларусь не Европа — данные по ней не подаются. Зато можно посмотреть, что происходит у соседей.
Еще одна служба, показывающая радиационную обстановку в Европе — это отделение .
Это американская сеть с «филиалами» в , , и , которая собирает показания счетчиков Гейгера от частных лиц с автоматической загрузкой данных на веб-сайт в режиме реального времени. Правда, у сервиса есть огромный минус — очень пестрый и неудобный дизайн.
Знак радиационной опасности
Новый знак радиационной опасности
Международный условный («трилистник», «вентилятор») имеет форму трёх секторов шириной 60°, расставленных на 120° друг относительно друга, с небольшим кругом в центре. Выполняется чёрным цветом на жёлтом фоне.
В таблице символов Юникод есть символ знака радиационной опасности — (U+0x2622).
В 2007 году был принят новый знак радиационной опасности, в котором «трилистник» дополнен знаками «смертельно» («череп с костями») и «уходи!» (силуэт бегущего человека и указывающая стрелка). Новый знак призван стать более понятным для тех, кто не знаком со значением традиционного «трилистника».
Продукты, снижающие уровень радиации в организме
Сама природа позаботилась о том, чтобы человек естественным путем через пищу мог уменьшить воздействие радиации, это такие овощи, как лук, чеснок, морковь, все то, чем богаты огороды. Главное, чтобы они были «натуральными», а не ускоренного выращивания. Морская капуста, грецкие орехи компенсируют нехватку йода в организме человека. Хрен и горчица также не будут лишними продуктами на столе.
Существует ошибочное мнение, что крепкие спиртные напитки выводят радиацию из организма – это не так. Водка, красное вино практически не влияют на ее количество. Единственной оговоркой можно уточнить, что красное вино в небольших количествах можно применять в качестве профилактики, но не более того.
Действующие нормы радиационного фона
Радиация в повседневной жизни
Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.
Правила радиационной безопасности касаются таких категорий граждан:
- военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
- персонал АЭС;
- люди, проживающие на территории с высоким радиационным фоном;
- профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
- работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
- ученые, работающие с радиоактивным материалом.
Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.
Если брать уровень воздействия радиационного фона и гамма-излучения в микрозивертах в час, то допустимой границей безопасности считается:
- просмотр телевизора 3 часа в день на протяжении года (0,005 мЗв);
- длительный перелет на самолете (0,01 мЗв);
- нахождение на открытой местности в солнечную погоду (1 мЗв);
- работа на атомных электростанциях (0,05 мЗв).
Опасной считается доза 11 мкЗв в час. Она повышает риск онкологических заболеваний.
Чем опасны радиоактивные камни?
К признакам предшествующего облучения относят не только необычно яркую окраску камня, но и не совсем характерный для него цвет, странный рисунок. Не всегда это говорит о том, что минерал бесконтрольно облучали, но насторожиться стоит. К примеру, относительно мелкие бледно-розовые морганиты (одна из разновидностей берилла) могут облагораживаться микродозами соединений радиоактивного элемента цезия. При этом уровень их радиоактивности обычно не превышает 0,19-0,24 мкЗв/ч или 19-24 мкР/ч.
Но, если вы видите перед собой маргонит слишком большого размера и необычно яркой окраски, высока вероятность того, что это опасный для здоровья радиоактивный камень, так как при его обработке применялись бесконтрольные методы облучения.
В норме экспозиционная доза ионизирующего излучения вблизи камня не должна превышать естественный радиационный фон местности, в которой вы находитесь. Обычно это не более 0,10 -0,25 мкЗв/ч или 10 — 25 мкР/ч. Опасным считается уровень радиоактивности минерала, превышающий 0,3 мкЗв/ч или 30 мкР/ч. Такие камни нельзя не только носить на теле, но и держать в доме или рабочем кабинете. Длительно контактируя с кожей, они могут вызвать серьезное ухудшение здоровья, вплоть до образования раковых опухолей в органах, расположенных рядом с местом соприкосновения.
Радиоактивные от природы камни
Большинство необлученных камней и минералов для человека безопасны. Но встречаются экземпляры с повышенной радиоактивностью, которые держать при себе и носить на теле опасно для здоровья. В частности, к ним относятся:
- Целестин (сульфат стронция). Чаще встречается в продаже в виде не ювелирных, а интерьерных украшений.
- Циркон (силикат циркония). Не стоит приобретать этот камень на черном рынке или в магазине с сомнительной репутацией, если у вас нет при себе дозиметра радиации.
- Гелиодор (разновидность берилла). Чем темнее и крупнее этот камень, тем выше вероятность исходящей от него опасности.
Уровень радиоактивности этих минералов не всегда превышает норму, но проверить приобретаемые образцы дозиметром не помешает.
Измерение радиоактивности камней как способ защиты
Продавцы украшений с радиоактивными камнями не всегда обманывают покупателей намеренно. Зачастую они не осознают опасности, которая исходит от такого товара. Даже будучи в курсе того, что минерал облучался, многие остаются в полном неведении относительно последствий такого облагораживания. Причины: отсутствие специальных знаний и образования, непонимание самой сути этого явления. Да и как доказать, что товар, который вы покупаете, носить опасно?
Без специальных приборов сделать это действительно невозможно. Именно поэтому многие ювелиры и работающие с камнями умельцы всегда имеют при себе портативный радиационный дозиметр. Он помогает измерить мощность дозы ионизирующего излучения рядом с интересуемым предметом. В данном случае – в непосредственной близости к декоративному камню.
С дозиметром работают так. Вначале проводят измерение радиационного фона помещения на удалении от предполагаемого источника радиации. Желательно сделать замеры в нескольких местах и высчитать средний показатель. Затем приступают к проверке мощности дозы излучения, которое исходит от камней. Если уровень их радиоактивности соответствует фону, значит, все нормально. Если фиксируется устойчивое превышение уровня естественного фона помещения, от камня стоит немедленно избавиться.
Какой естественный радиационный фон подходит для человека
В каждом регионе имеется свой радиационный фон, но для населения считается безопасной величина, примерно равная 0,5 микрозиверта в час. Наиболее подходящий безопасный уровень для человеческого тела находится ниже 0,2 микрозиверта, такую же величину имеет естественный радиационный фон. Норма в плане радиоактивности и ее влияние на человека для различных ситуаций своя. Осуществляется во всех ситуациях разделение между персоналом, то есть гражданами, работа которых имеет отношение к радиоактивности, ядерной промышленности, и обычным населением. Имеются определенные нормы для помещений и сотрудников.
Примечания
- Комментарии
- Для сопоставления измеренных величин экспозиционной дозы с эффективной дозой, приведённой в трудах НКДАР, следует использовать следующие коэффициенты: коэффициент соответствия экспозиционной дозы поглощённой дозе 1 Р = 0,873 рад (в воздухе); коэффициент 0,01 перевода из внесистемной единицы Рад в единицу СИ грей; принятый НКДАР коэффициент 0,7 перехода от поглощённой дозы в воздухе к эффективной дозе, получаемой человеком .
- Источники
- ↑ Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. Защита от ионизирующих излучений. В 2-х томах. M., Энергоатомиздат, 1989
- ↑ Ионизирующие излучения и их измерения. Термины и понятия. М.: Стандартинформ, 2006.
- Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене. 2-е изд., перераб. и доп. М., Атомиздат, 1974
- Нормы радиационной безопасности (НРБ-99/2009). Минздрав России, 2009.
- Обеспечение жизнедеятельности людей в чрезвычайных ситуациях. Выпуск 1: Чрезвычайные ситуации и их поражающие факторы. — СПб.: Образование; Российский государственный педагогический университет имени А. И. Герцена. — 1992.
- ↑ Зигбан К. (ред.) Альфа-, бета- и гамма-спектроскопия. Пер. с англ. М.: Атомиздат, 1969.
- ↑ Волков Н. Г., Христофоров В. А., Ушакова Н. П. Методы ядерной спектрометрии. М. Энергоатомиздат, 1990.
- Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 1985.
- Главный редактор А. М. Прохоров. Рентген // Физический энциклопедический словарь. — Советская энциклопедия (рус.). — М., 1983. // Физическая энциклопедия
- Радиационная химия // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 200. — ISBN 5-7155-0292-6.
- Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26. — 240 с. — ISBN 5-7050-0118-5.
- Кудряшов Ю.Б. Радиационная биофизика. — Москва: Физматлит, 2004. — С. 136.
- International Commission on Radiological Protection. Publication 60: Recommendations of the International Commission on Radiological Protection.
- (недоступная ссылка). Дата обращения: 13 июня 2015.
- (недоступная ссылка). Дата обращения: 13 июня 2015.
- . Дата обращения: 3 января 2013.
- РМГ 78-2005 ГСИ. Излучения ионизирующие и их измерения. Термины и определения. — М. : Стандартинформ, 2006. — 20 с.
- Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений : Справочник. — 4-е изд. — М. : Энергоатомиздат, 1995. — С. 110—112. — 496 с.
- , p. 84.
- , pp. 87,113.
- , p. 88.
- , p. 86.
- , p. 89.
- , p. 91.
- , pp. 92—93, 116.
- , pp. 91, 121.
- Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений : Справочник. — 4-е изд. — М. : Энергоатомиздат, 1995. — С. 27. — 496 с.
- Голубев Б.П. Дозиметрия и защита от ионизирующих излучений : Для студентов вузов. — 4-е изд. — М. : Энергоатомиздат, 1986. — С. 80. — 464 с.
- , p. 92.
- , p. 5.