Бэр, карл эрнст фон

Термины и определения

Радиация или ионизирующее излучение — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад — это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада — статистическая вероятность распада атома за единицу времени.

Период полураспада — промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы — это изменение дозы за единицу времени.

Наука

После вуза Бэр отправился за границу — решил, что не слишком глубоко изучил медицину, и для освоения сравнительной анатомии переехал в Вену. Там свел знакомство с Фридрихом Бурдахом, который, видя потенциал Бэра, предложил ему хорошую работу. Так в биографии Карла появился Кенигсбергский университет, где он стал помощником профессора на кафедре физиологии.

С тех пор карьера Бэра шла только вверх. Кроме того, что он читал курсы по антропологии и анатомии и вел практические занятия для студентов, мужчина успевал писать и публиковать работы по цитологии, а вскоре стал профессором зоологии. И только в 1826 году с него сняли обязанности прозектора и назначили профессором анатомии, а по совместительству и директором Института анатомии.

Карл Бэр в старости

В свободное от основной работы время Бэр писал работы по антропологии, анатомии животных и естественной истории, выступал с докладами в ученых обществах. В 1828 году Карл опубликовал книгу «Истории развития животных», которую исследовал на примере эмбриона цыпленка. Мужчина сделал открытие в области исследования позвоночных, за что в дальнейшем не единожды награждался премиями.

Бэр также занимался исследованием Новой Земли и Каспийского моря. В результате наблюдений в 1855 году ему удалось сформулировать закон, согласно которому в Северном полушарии реки, протекающие в любом направлении, больше подмывают берега, расположенные с правой стороны, в то время как реки Южного полушария — левые. Результат этого исследования внес ясность в вопрос об асимметрии склонов речных долин.

Источники радиации вокруг нас

Доза облучения, которую мы получаем от источников ионизирующего излучения:

  • Техногенные аварии, атомные станции, ядерные испытания – около 1 %.
  • Продукты питания и напитки – 4 %.
  • Естественная радиация, излучаемая присутствующими вокруг радионуклидами, – 5 %.
  • Космическая (солнечная) радиация – 5 %.
  • Медицинские обследования – 25 %.
  • Вдыхание радиоактивного газа радона – 60 %.

Таким образом, самую большую дозу облучения мы получаем не в медицинских кабинетах и не в результате давно прошедших техногенных аварий, а в собственных домах и на рабочих местах.

А вы проверяли свою среду индикатором радиоактивности? Уверены, что вашему здоровью ионизирующее излучение не угрожает?

Внутреннее облучение радоном

Этот фактор действует исподтишка, он неощутим, но от этого не менее опасен. Естественный радиоактивный газ радон в больших количествах образуется в толще земли вследствие распада природных радионуклидов. Один из двух его изотопов испускает радиоактивные частицы. Они попадают в организм при дыхании, облучая его изнутри. Больше всего радона скапливается в наших квартирах. Он поступает туда:

  • во время работы газовой плиты;
  • с водой из артезианских источников, поступающей в дом по системе водопровода;
  • с воздухом из лифтов, которые засасывают радон из подвалов помещений подобно большим поршням;
  • через строительные материалы с радиоактивными элементами.

Самое большое количество радона вдыхают владельцы загородных одноэтажных коттеджей и дачники. Газ накапливается в подвалах, откуда через щели перекрытий и зазоры поднимается выше – в жилые помещения дома. Если вы живете в коттедже и пользуетесь водой из артезианской скважины, проверьте датчиком радона, фон в вашей ванной, включив предварительно горячую воду. Нередко превышение концентрации радона фиксируется уже через 5 минут.

Проблема загрязнения помещений радоном осложняется тем, что большая часть территории России находится в зоне холодного климата. Люди стараются держать окна закрытыми, чтобы сберечь тепло, «запирая» при этом радиоактивный газ изнутри. Немногие знают, что снизить его концентрацию до безопасного уровня помогает обычное частое проветривание.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Литература

  • Райков Б. Е. Русские биологи-эволюционисты до Дарвина: материалы к истории эволюционной идеи в России. Т. I. М.—Л.: 1951.
  • Биографическая библиотека Ф. Павленкова. ЖЗЛ в 3-х томах ISBN 5-224-03120-6
  • Бэр К. М. Автобиография / Ред. акад. Е. Н. Павловского и коммент. проф. Б. Е. Райкова. — Л.: Изд-во АН СССР, 1950.
  • Безенгр В. Н. Памяти к. Э. Бэра как антрополога. — М., 1880.
  • Вернадский, В. Памяти акад. К. М. Бэра. Л., 1927
  • Конференция, посвященная памяти Бэра. Тарту. 1976. 30.09 — 2.10.1976: Тезисы докл. — Тарту: ТГУ, 1976.
  • Кузнецов, Иннокентий Дмитриевич. Академик Карл Эрнст (Карл Максимович) фон Бэр, его жизнь и деятельность, преимущественно в области ихтиологии научной и прикладной. СПб, тип. В. Демакова, 1892.
  • Овсянников Ф. В. Очерк деятельности К. М. Бэра и значение его трудов. — СПб.: Тип. Акад. наук, 1879.

Увековечение памяти К. Бэра

Памятник К. Бэру в Тарту

В ноябре 1886 года в Тарту был установлен памятник Бэру работы скульптора А. М. Опекушина.
Памятники Бэру (варианты памятника Опекушина) установлены также у входа в Зоологический музей Зоологического института РАН, в Библиотеке Академии наук (БАН) в Санкт-Петербурге и бюст в Астрахани на Аллее Славы Земли Астраханской.

В 1864 году была утверждена премия имени К. Бэра.

К. Бэр на эстонской банкноте в 2 кроны

Карл фон Бэр был изображён на банкноте достоинством в две эстонские кроны.

В честь Бэра названы:

  • остров Бэра в Таймырской губе Карского моря;
  • мыс Бэра на Новой Земле;
  • гряда холмов в Прикаспийской низменности (Бэровские бугры);
  • нырок (Aythya baeri) из семейства утиных;
  • улицы в Астрахани, в посёлке Кизань Астраханской области и в Тарту

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).

В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц – 10-20;
  • для гамма- и бета-излучения – 1;
  • для протонов – 5-10;
  • для нейтронов со скоростью до 10 кэВ – 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер – 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.

Основные радиологические величины и единицы
Величина Внесистемные Си Соотношения между единицами
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·1010Бк
1 Бк = 1 расп/с
1 Бк=2.7·10-11Ки
Экспозицион-
ная доза, X
Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg)
1 Р=2.58·10-4 Кл/кг
1 Кл/кг=3.88·103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр) Зиверт (Зв, Sv) 1 бэр=10-2 Зв
1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10-5 Гр·кг
1 Гр·кг=105 рад·г

Когда развивается лучевая болезнь

Следствием воздействия критической дозы радиации на человека становится развитие лучевой болезни. Она поражает практически все системы организма. В зависимости от дозы излучения может поддаваться лечению или приводить к летальному исходу.

Согласно последним исследованиям, для появления лучевой болезни опасная доза радиации в год составляет 1,5 Зв. Предел допустимой дозы однократного облучения – 0,5 Зв. После этой отметки начинают проявляться признаки поражения.

Выделяют следующие формы лучевой болезни:

  1. Лучевая травма. Появляется, если дозировка разового излучения не превышала 1 Зв.
  2. Костномозговая форма. Опасные нормы – от 1 до 6 Зв. В половине случаев такая форма болезни приводит к летальному исходу.
  3. Желудочно-кишечная форма наблюдается при дозировке излучения от 10 до 20 Зв. Сопровождается внутренними кровотечениями, лихорадочным состоянием, развитием инфекционных поражений.
  4. Сосудистая форма. Развивается после облучения в пределах от 20 до 80 Зв. Происходят тяжелые гемодинамические нарушения.
  5. Церебральная форма. Наблюдается при облучении свыше 80 Зв. Происходит мгновенный отек мозга и смерть пострадавшего.

В некоторых случаях лучевая болезнь может перерастать в хроническую форму. Период ее формирования может занимать до трех лет. После этого происходит восстановление организма, которое длится еще три года. При правильной терапии результатом становится излечение. Но в некоторых случаях спасти пациента не удается.

Литература

  • Райков Б. Е. Русские биологи-эволюционисты до Дарвина: материалы к истории эволюционной идеи в России. Т. I. М.—Л.: 1951.
  • Биографическая библиотека Ф. Павленкова. ЖЗЛ в 3-х томах ISBN 5-224-03120-6
  • Бэр К. М. Автобиография / Ред. акад. Е. Н. Павловского и коммент. проф. Б. Е. Райкова. — Л.: Изд-во АН СССР, 1950.
  • Безенгр В. Н. Памяти к. Э. Бэра как антрополога. — М., 1880.
  • Вернадский, В. Памяти акад. К. М. Бэра. Л., 1927
  • Конференция, посвященная памяти Бэра. Тарту. 1976. 30.09 — 2.10.1976: Тезисы докл. — Тарту: ТГУ, 1976.
  • Кузнецов, Иннокентий Дмитриевич. Академик Карл Эрнст (Карл Максимович) фон Бэр, его жизнь и деятельность, преимущественно в области ихтиологии научной и прикладной. СПб, тип. В. Демакова, 1892.
  • Овсянников Ф. В. Очерк деятельности К. М. Бэра и значение его трудов. — СПб.: Тип. Акад. наук, 1879.

Степени воздействия радиации на человека

Разобраться в вопросе, какая доза радиации опасна для человека, поможет таблица.

Доза радиации, Зв Воздействие на человека
До 0,05 Допустимые дозы облучения. При таком воздействии негативных последствий для здоровья человека не наблюдается.
От 0,05 до 0,2 Симптомы лучевой болезни не проявляются. В будущем повышается вероятность развития онкологических заболеваний, а также генетических мутаций у потомства.
От 0,2 до 0,5 Негативной симптоматики не наблюдается. В крови уменьшается концентрация лейкоцитов.
От 0,5 до 1 Проявляются первые признаки лучевой болезни. У мужчин многократно повышается вероятность бесплодия.
От 1 до 2 Тяжелая форма лучевой болезни. Исходя из статистических данных, 10% людей, получивших такую дозу облучения, живут не более месяца. В первые 10 дней состояние пострадавшего стабильное, после чего происходит резкое ухудшение самочувствия.
От 2 до 3 Вероятность летального исхода в течение первого месяца повышается до 35%. Концентрация лейкоцитов крови падает до критических значений.
От 3 до 6 Сохраняется возможность излечения. Погибают около 60% пострадавших. Причиной смерти становится развитие инфекционных заболеваний и внутренние кровотечения.
От 6 до 10 Вероятность летального исхода – 100%. Излечиться в этом случае невозможно. Современной медицине удается отстрочить смерть максимум на год.
От 10 до 80 Человек впадает в глубокую кому. Смерть наступает спустя полчаса.
Более 80 Смерть от радиации наступает мгновенно.

Безопасным считается излучение, мощность которого не превышает 0,2 микрозиверта в час. Допустимая доза радиации для человека не превышает 0,05 Зв. Облучение выше этого показателя приводит к серьезным последствиям для здоровья. Годовая доза рентгеновского облучения в 0,05 Зв характерна для людей, работающих на атомных станциях при условии отсутствия каких-либо нештатных ситуаций.

Роль играет не только мощность излучения, но и продолжительность воздействия. Низкое по силе воздействие, оказывающее влияние продолжительное время, окажется более губительным для здоровья, чем кратковременное сильное воздействие. Но это справедливо только в том случае, если речь не идет о смертельных дозах радиации.

Основные труды

Карл Эрнст фон Бэр (1865)

  • «Dissertatio inaugurales medica de morbis inter esthonos endemicis». 1814.
  • «Послание о развитии яйца млекопитающих и человека» («Epistola de ovi mammalium et hominis genesi», «Über die Bildung des Eies der Saugetiere und des Menshen. Mit einer biographish-geschichtlichen Einführung in deutsch». Leipzig, Voss, 1827 );
  • «История развития животных» («Über die Entwickelungsgeschichte der Thiere», ; );
  • Экспедиция в Новую землю и Лапландию. Физический очерк посещенных стран.

Статья 1: Берега Белого моря и Лапландии. — 18 с.
Статья 2: Геогностическое строение Новой Земли. — 11 с.

  • «Исследование развития рыб» («Untersuchungen Entwickelung der Fische», ).
  • «Untersuchungen über die ehemalige Verbreitung und die gänzliche Vertilgung der von Steller, beobachteten nordichen Seekuh». St. Petersburg. 1838.
  • «Путешествие Бэра в Новую землю». 1838.
  • «Предложенiе о разведенiи квинои въ сЂверныхъ областяхъ Россiйской имперiи». СПб, 1839.
  • «Statistische und ethnographische Nachrichten über die russishen Besitzungen an der Nordwestkuste von Amerika». St. Petersburg, 1839.
  • «Материалы к познанию нетающего почвенного льда в Сибири» — монография написана (1842 г.), перевод на русский язык сделан (1940 г.), издана Якутск: Издательство Института мерзлотоведения СО РАН (отв. ред. Р. М. Каменский). — 2000. — 160 с.
  • «Nachrichten aus Sibirien und der Kirgisen-Steppe». St. Petersburg, 1845.
  • «Об этнографических исследованиях вообще и в России в особенности». 1846.
  • «Человек в естественно-историческом отношении». СПб, 1850.
  • «Матерiалы для исторiи рыболовства въ Россiи и въ принадлежащихъ ей моряхъ» СПб, 1854.
  • «Kaspische Studien». St. Petersburg, 1855
  • «О черепах ретийских романцев». 1859 г.
  • «О древнейших обитателях Европы». СПб, 1863
  • «Selbstbiographie von Dr. Karl Ernst von Baer». St. Petersburg, 1866
  • «Das neuentdeckte Wrangells-Land». Dorpat, Gläser, 1868.

Диагностика

Появление лучевой болезни выявляется на основании первичных признаков

Пристальное внимание уделяется пациентам, которые побывали в ситуации, когда превышена безопасная доза радиации

Степень тяжести поражения определяется в ходе исследования образцов крови пострадавшего. Выясняется наличие анемии, ретикулоцитопении, лейкопении, СОЭ.О наличии лучевой болезни говорят признаки кровотечения в миелограмме. В дополнение к исследованию крови проводят следующие диагностические мероприятия:

  1. Забор соскобов кожных язв и проведение микроскопии.
  2. ЭЭГ.
  3. УЗИ брюшной полости.
  4. УЗИ щитовидной железы.
  5. УЗИ органов таза.

Одновременно с этим проводятся консультации с узкими специалистами: гематологом, эндокринологом, невропатологом и гастроэнтерологом. Они внимательно изучают клиническую картину болезни и результаты всех обследований.

Симптоматика лучевой болезни

Если нормальная доза радиации была превышена не критически, то появляются симптомы лучевой травмы. Среди них выделяют:

  • Приступы тошноты и рвоты.
  • Сухость слизистых поверхностей носоглотки.
  • Во рту ощущается вкус горечи.
  • Появляются сильные головные боли.
  • Пострадавший быстро устает, его покидают жизненные силы.
  • Снижается артериальное давление.


В случае превышения дозы облучения в 10 Зв наблюдаются следующие признаки:

  • Покраснение отдельных участков кожи. Со временем они приобретают синий оттенок.
  • Изменяется частота сокращения сердечной мышцы.
  • Снижается мышечный тонус.
  • Появляется тремор в пальцах.
  • Пропадает сухожильный рефлекс.

Спустя четыре дня выраженные симптомы пропадают. Заболевание переходит в скрытую форму. Ее продолжительность будет зависеть от степени поражения организма. При этом в значительной степени снижаются все рефлексы организма, проявляются симптомы невралгического характера.

Если доза облучения превышала 3 ЗВ, то спустя две недели начинается интенсивное облысение. При дозе выше 10 Зв заболевание сразу же переходит в третью фазу. Наблюдается серьезное изменение состава крови, развиваются инфекционные заболевания. В кратчайшие сроки наступает отек мозга, полностью пропадает мышечный тонус. В подавляющем большинстве случаев человек погибает.

Научные труды в области эмбриологии (Закон зародышевого сходства)

См. также: Биогенетический закон

Карл Эрнст фон Бэр показал, что развитие всех организмов начинается с яйцеклетки. При этом наблюдается следующие закономерности, общие для всех позвоночных: на ранних этапах развития обнаруживается поразительное сходство в строении зародышей животных, относящихся к разным классам (при этом эмбрион высшей формы похож не на взрослую животную форму, а на её эмбрион); у зародышей каждой большой группы животных общие признаки образуются раньше, чем специальные; в процессе эмбрионального развития происходит расхождение признаков от более общих к специальным.

Законы Бэра

Карл Бэр в своих трудах по эмбриологии сформулировал закономерности, которые позднее были названы «законами Бэра»:

  1. Наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки.
  2. После формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе.
  3. Зародыш любого вида животных по мере развития становится все менее похожим на зародыш других видов и не проходит через поздние стадии их развития.
  4. Зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида.

Естественная радиация

Уровень природной радиации зависит от нескольких факторов:

  • показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
  • структуры почвы, воды, горных пород;
  • искусственных причин (производство, АЭС).

Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.

Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.

По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100–700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2–3 миллизиверт.

Основные единицы измерения ионизирующих излучений

Рентген (Р, R) – внесистемная единица экспозиционной дозы фотонного (гамма- и рентгеновского) излучений. Микрорентген – миллионная часть рентгена, мкР

Поглощённая доза (сокращённое обозначение – д о з а) – определяется двумя основными способами.

Для малых и средних уровней облучения – применяют единицы Зиверт. Дальше – считают в единицах Грэй. По цифрам, эти ед-цы примерно равны.
Зиверт (Зв, Sv) – в системе единиц СИ, поглощенная доза с учётом, в виде коэффициентов,
энергии и типов излучения (эквивалентная) и радиочувствительности живых органов и тканей в теле человека (эффективная). Данная ед-ца используется до величин дозы – порядка 1.5 зиверта, для более высоких значений облучения – используют Грэи.

1 миллизиверт (мЗв. mSv) = 0.001 зиверт

1 микрозиверт (мкЗв. µSv) = 0.001 милизиверт

Для оценки влияния ионизирующего облучения на человека – служит величина индивидуальной эффективной дозы (ИЭД, мЗв/чел.) Медицинская компонента, обусловленная использованием ИИИ (источников ион. излучения) в медицинских целях – составляет от 20 до 30%.

бэр – биологический эквивалент рентгена; это старая, внесистемная единица поглощённой дозы; современная – Зиверт.

1 бэр ~ 1 сЗв (сантизиверт).

1 Зв ~ 100 бэр
Мощность дозы – д о з а  излучения за единицу времени:

0.10 мкЗв/час == 10 мкР/час
(двойной знак равенства означает здесь «примерно»)

1 зиверт == 100 рентген

Коэффициент качества излучения для гамма-квантов и бета-частиц равен единице (Q=1), для быстрых нейтронов Q=10, для альфа-частиц Q=20 и т.д.

Активность (А) радиоактивного вещества – число спонтанных ядерных превращений в этом вещ-ве на определённой площади, в единичном кубическом объёме («объёмная активность») или в единице веса («удельная активность») за малый промежуток времени. Единицей измерения активности, в системе СИ, является:

1 беккерель (Бк, Bq) = 1 ядерное превращение в секунду

109 Бк = 1 гигабеккерель (ГБк, GBq)

До сих пор ещё используется (особенно часто – на экологических картах радиоактивного заражения, в расчёте на квадратный километр) старая внесистемная единица измерения активности рад.вещ. в сист. СГС – К ю р и:
1 кюри (Ки, Ci) = 3,7 х 1010 беккерель = 37 гигабеккерель (ГБк, GBq)

1 мкКи (микрокюри) = 3,7 х 104 распадов в секунду = 2,22 х 106 расп. в минуту.

Человеческий организм содержит примерно 0,1 мкКи калия-40 натурального происхождения.
Верхнее значение безопасной (то есть, на уровне естественной) «минимально значимой активности» (МЗА) – находится в пределах от 3.7 кБк (килобеккерель) до 37 МБк (мегабеккерель), в зависимости от вида излучения (до удельных 74 кБк/кг – для твёрдых бета-активных,
менее 3.7 кБк/кг – для гаммаактивных, меньше 7.4 кБк/кг – для альфаактивных веществ, до 0.37 кБк/кг – для трансурановых).

Грэй (Гр, Gy) – в системе СИ, величина энергии ионизирующего излучения, переданная веществу.

1 Гр (ед. СИ) = 100 рад (внесистемная единица) == 100 рентген (с точностью 15-20%, для энергий 0.1-5 МэВ)

5 мГр == 500 мР = 0.5 Р (безопасная доза общего кратковременного облучения – исключаются клинически выраженные соматические эффекты; при медицинском обследовании или лечении – это как снимок флюорографии, сделанный на старом аппарате, раз в год).

При экспозиционной дозе в 1 рентген, поглощённая доза в воздухе будет 0,85 рад

Определение слова «Бер» по БСЭ:

Бер (Ваег)Жан Жорж (р. 12.2.1902, Лондон), швейцарский зоолог-паразитолог. Учился в Невшательском, Женевском и Парижском университетах. Член Рокфеллеровского фонда, вице-президент Международного совета биологических обществ (IUBS), член ряда научных обществ США и Англии, почётный доктор университета в Монпелье (Франция). Автор свыше 200 работ по паразитологии, ряда статей по охране природы и Международной биологической программе (МБП). Участник экспедиций в тропическую Африку и в Арктику. Исследования Б. по темноцефалам и ленточным червям птиц и млекопитающих легли в основу современных представлений об этих паразитах. Награжден золотой медалью общества акклиматизации и охраны природы в Париже.Соч.: Йtude monographique du groupe des temnocйphales, «Bulletin Biologique de la France et de la Belgique», 1931, t. 65, р. 1- 406. Le parasitisme, Lausanne, 1946. Ecology of animal parasites, 2 ed., Urbana, 1952.

Бер (Bert)Поль (19.10.1833, Оксер, Йонна, — 11.11.1886, Ханой), французский естествоиспытатель и врач, член Института Франции (1881). Доктор медицины (1863) и доктор естественных наук (1866). Ученик и преемник К. Бернара по кафедре физиологии на факультете естественных наук в Сорбонне (1869), основоположник современной авиационной и подводной медицины. Его исследования по пересадке и прививке животных тканей явились ценным вкладом в пластическую хирургию. В 1859 Б. опубликовал «Лекции по сравнительной физиологии дыхания».Классический труд Б. о барометрическом давлении (1878) остался неоцененным и лишь 30 лет спустя английский физиолог Дж. С. Холдейн назвал Б. отцом учения о влиянии барометрического фактора на животный организм.«Лекции по зоологии» переведены на русский язык (1882, 4 изд. 1904).Соч.: La pression barometrique, P., 1878.Г. Э. Фельдман.

Виды радиоактивных излучений

Изучая природу радиоактивного излучения, его подвергли воздействию электрического и магнитного полей. Результатом эксперимента стало разделение лучей на положительные и отрицательные, и понимание их неоднородности.

Были открыты закон распада, виды излучений и типы радиоактивности: α-распад, β-превращение, γ-излучение, нейтронное излучение, протонная, кластерная радиоактивности.

Проникая в среду, радиация взаимодействует с атомами, возбуждает их и вырывает электроны. Нейтральные атомы превращаются в положительно заряженные ионы – первичная ионизация. Выбитые электроны за счет собственной энергии сталкиваются с атомами среды и создают вторичную ионизацию.

Растеряв энергию, электроны становятся свободными и образуют отрицательные ионы.

Альфа излучение

Есть 40 природных α-активных ядер и 200 созданных человеком. Альфа излучение – это поток частиц из них.

Проникая через слой вещества, α-частица вступает в неупругое взаимодействие с его атомами и молекулами, ускоряет электроны до преодоления кулоновских ядерных сил и производит ионизацию.

Впоследствии, когда энергия частицы уменьшается, она присоединяет 2 свободных электрона и становится атомом гелия.

Пробег частицы в воздухе 10-11 см, а в тканях тела человека – микроны. Ее большая масса препятствует отклонению от прямого пути.

При внешнем воздействии этого типа излучения на кожу – опасности нет. Если радиоактивный элемент попадет во внутрь с пищей, водой или через рану, то нанесет непоправимые последствия для организма за счет продолжительного времени распада.

Нейтронное излучение

Этот тип излучения используется в оружии массового поражения – нейтронной бомбе. Она способна уничтожать живые объекты, оставляя нетронутыми здания, сооружения, технику.

Нейтральные частицы легко проникают сквозь любую среду и взаимодействуют с ядрами элементов. Отдавая им часть своей энергии, создают вторичную (наведенную) радиацию. Надежной защиты от поражающего фактора не существует. Задержать частицы способны большие объемы воды и некоторые виды полимеров, многослойные среды.

Бета-излучение

Бета-излучение представляет собой поток позитронов и нейтрино или электронов и антинейтрино. Существует третий вариант – k-эффект (захват электрона). Ядро поглощает электрон из оболочки и один из протонов становится нейтроном, при этом испускает нейтрино.

β-излучение распространяется со скоростью близкой к скорости света, сильно отклоняется в электромагнитных полях, но обладает меньшей в сотни раз ионизирующей способностью, чем α-частицы.

За счет лучшего сохранения энергии бета-частицы пробегают большее расстояние – от десятков метров в газах до нескольких мм в металлах. Проникновение в живые ткани – 1,5 см.

Гамма излучение

Y-излучение проникает в свинец на 5 см. В газах распространяется на сотни метров, тело человека «прошивает» насквозь.

Y-частицы – фотоны, создают Комптон-эффект и фотоэффект, образуют электронно-позитронные пары, что подтверждает возможность превращения электромагнитной волны в вещество – единую картину мира.

Рентгеновское излучение

В волновом спектре рентгеновское излучение расположено между ультрафиолетовыми лучами и γ-излучением.

Для создания потока фотонов на рентгеновских частотах используют электровакуумные приборы – трубки. В них 99% затрат энергии – тепловые потери, и 1% создает требуемое излучение.

По степени воздействия лучи относят к мягким или жестким. Для биологических объектов они мутагенные, приводят к ожогам, раку и лучевой болезни.

Литература

  • Райков Б. Е. Русские биологи-эволюционисты до Дарвина: материалы к истории эволюционной идеи в России. Т. I. М.—Л.: 1951.
  • Биографическая библиотека Ф. Павленкова. ЖЗЛ в 3-х томах ISBN 5-224-03120-6
  • Бэр К. М. Автобиография / Ред. акад. Е. Н. Павловского и коммент. проф. Б. Е. Райкова. — Л.: Изд-во АН СССР, 1950.
  • Безенгр В. Н. Памяти к. Э. Бэра как антрополога. — М., 1880.
  • Вернадский, В. Памяти акад. К. М. Бэра. Л., 1927
  • Конференция, посвященная памяти Бэра. Тарту. 1976. 30.09 — 2.10.1976: Тезисы докл. — Тарту: ТГУ, 1976.
  • Кузнецов, Иннокентий Дмитриевич. Академик Карл Эрнст (Карл Максимович) фон Бэр, его жизнь и деятельность, преимущественно в области ихтиологии научной и прикладной. СПб, тип. В. Демакова, 1892.
  • Овсянников Ф. В. Очерк деятельности К. М. Бэра и значение его трудов. — СПб.: Тип. Акад. наук, 1879.

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*103 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

1 Р = 2,57976*10-4 Кл/кг

Доза в 1 Рентген — это образование 2,083*109 пар ионов на 1см3 воздуха

Научные труды в области эмбриологии (Закон зародышевого сходства)

Карл Эрнст фон Бэр показал, что развитие всех организмов начинается с яйцеклетки. При этом наблюдается следующие закономерности, общие для всех позвоночных: на ранних этапах развития обнаруживается поразительное сходство в строении зародышей животных, относящихся к разным классам (при этом эмбрион высшей формы похож не на взрослую животную форму, а на её эмбрион); у зародышей каждой большой группы животных общие признаки образуются раньше, чем специальные; в процессе эмбрионального развития происходит расхождение признаков от более общих к специальным.

Законы Бэра

Карл Бэр в своих трудах по эмбриологии сформулировал закономерности, которые позднее были названы «законами Бэра»:

  1. наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки;
  2. после формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе;
  3. зародыш любого вида животных по мере развития становится все менее похожим на зародыш других видов и не проходит через поздние стадии их развития;
  4. зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида.

Детство и юность

Карл Эрнст фон Бэр, так звучит полное имя ученого, родился в феврале 1792 года в Вейсенштейнском уезде Эстляндской губернии, Российская империя, территория которого ныне относится к Эстонии. Его отец принадлежал к семье эстляндских дворян, был женат на Юлии фон Бэр, которая приходилась мужчине двоюродной сестрой.

Карл Бэр в молодости

Карл начал познавать окружающий мир в ранние годы, с прогулок часто приносил в дом улиток, разноцветные камни и другие интересные на его взгляд предметы. В школу мальчик не ходил, педагоги занимались с ним дома, юный Бэр рано начал изучать несколько языков, математику и географию. А уже в 11 лет в его списке для изучения предметов была и высшая математика.

Впервые в школе Карл оказался в 15 лет, после беседы с директором его зачислили в старшие классы, с детьми младшего возраста он должен был изучать только греческий язык. Уже через 3 года Бэр поступил в Дерптский университет, где решил изучать медицину. А еще через 4 года он написал работу, за защиту которой получил степень доктора медицины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector